

175 Cabot Street – Suite 210

Lowell, MA 01854 USA

www.cspi.com

NASDAQ: CSPI

Can I use a two-port Myri-10G network adapter as an inline Ethernet analyzer

and simultaneously use the Sniffer10G API with the Sniffer10G Libpcap

interface?

Model:

ARC Series C Adapters (10G-PCIE2-8C2-2S)

Software:

Sniffer10G

Operating System:

Supports both Linux and Windows Operating Systems.

Information:

We have a question on the simultaneous use of the Sniffer API with the SNF libpcap. To be specific on what we thought

we could do, we looked at using a two-port network adapter as an inline Ethernet analyzer.

To do this, we used the sample snf-bridge tool to bridge port 0 to port 1. By bridging in both directions (0->1 and 1<-0)

the bridge seems to work in that we can transparently ping through the “appliance”.

To analyze the traffic, we tried to use tcpdump on one of the SNF ports with the expectation that this should act like a

tap to the data we bridge. This fails and we get a snf_open failed message on the tcpdump if the bridge is up and

running:

[root@xxxx ~]# tcpdump -ni snf0

snf.0.0 P (userset) SNF_PORTNUM = 0

snf.0.0 P (default) SNF_NUM_RINGS = 1 (0x1)

snf.0.0 P (default) SNF_RSS_FLAGS = 49 (0x31)

snf.0.0 P (default) SNF_DATARING_SIZE = 268435456 (0x10000000) (256.0 MiB)

snf.0.0 P (default) SNF_DESCRING_SIZE = 67108864 (0x4000000) (64.0 MiB)

snf.0.0 P (default) SNF_FLAGS = 0

snf.0.0 P (environ) SNF_DEBUG_MASK = 3 (0x3)

snf.0.0 P (default) SNF_DEBUG_FILENAME = stderr

snf.0.0 P SNF_DEBUG_MASK=0x3 for modes WARN=0x1, PARAM=0x2 QSTATS=0x4

TIMESYNC=0x8 IOCTL=0x10 QEVENTS=0x20

tcpdump: snf_open failed: Permission denied

If the bridge is disabled the tcpdump works fine on the snf interface but the bridge can only be opened in one direction

so we can’t get a combination bridge A to B, B to A and tcpdump running at the same time.

With “tcpdump -ni snf0” running, then the snf_bridge will load from port 1 to 0 (./snf_bridge -b 1:0:1) but not 0 to 1

(./snf_bridge-b 1:0:1). This reverse if tcpdump is done on snf1. For example, error seen is:

[root@xxxx tests]# ./snf_bridge -b 1:0:1

SNF Failure at line 452: (errno=13)

Without tcpdump running then the bridge is loaded with “./snf_bridge -b 0:1:1 -b 1:0:1” and we can at least ping

through it.

Answer:

Perhaps the best way to explain it is that there is only one underlying receive ring and processes or thread can each

arrange to have an additional ring.

If there is more than one interested process or thread can each arrange to have an additional ring.

If there is more than one interested process or thread, the SNF_F_SHARED bit of the SNF_FLAGS and the number of

rings in total that will be used must be specified (e.g. with the NUMB_RINGS flag). By default pkts are distributed among

the rings via the RSS hash function. You can specify to duplicate the data to all virtual rings but this is not as efficient as

the RSS and won’t keep up with line rate.

By default, NUM_RINGS is 1 and flags are 0 so by doing:

$./snf_simple_recv -b0

snf_recv ready to receive

In one window then

$./snf_simple_recv -b0

Can't open snf for sniffing: Permission denied

If the bridge is disabled the tcpdump works fine on the snf interface but the bridge can only be opened in one direction

so we can’t get a combination bridge A to B, B to A and tcpdump running at the same time.

With “tcpdump -ni snf0” running, then the snf_bridge will load from port 1 to 0 (./snf_bridge -b 1:0:1) but not 0 to 1

(./snf_bridge-b 1:0:1). This reverse if tcpdump is done on snf1. For example, error seen is:

You are running into something similar to this when trying to start tcpdump on the snf device when the bridge program

is running. The bridge program uses multiple threads (and cores) internally in order to keep up with line rate packet

forwarding. It internally sets the number of rings to exactly the number it uses and does not account for another app

sharing the ring. You could modify or override to add one to the number of rings, but the bridge needs to run in RSS

mode not duplicate mode, so you would only see a small portion of the traffic and the bridge would not forward that

traffic.

The two options to sniff the tap both require modifying the bridge example code. You could call the snf_netdev_reflect()

function for every packet you wanted to sniff, then run tcpdump on the Ethernet device.

This is not efficient since that traffic would be passed to the kernel stack. The other option (and one we’ve used) is to

write packets directly in pcap format file. See ‘man 3 libpcap’ to see the interface. If you use a ram disk, you can write

the packets to output at a fairly good rate (but not line rate).

Draft Date Change

1 7/11/16 Initial Draft

2 8/2/2016 Feedback

3 8/19/2016 Further Edits

